Using different cost functions when pre-training stacked auto-encoders
نویسندگان
چکیده
منابع مشابه
A Pitfall of Unsupervised Pre-Training
In this paper we thoroughly investigate the quality of features produced by deep neural network architectures obtained by stacking and convolving Auto-Encoders. In particular, we are interested into the relation of their reconstruction score with their performance on document layout analysis. When using Auto-Encoders, intuitively one could assume that features which are good for reconstruction ...
متن کاملGradual training of deep denoising auto encoders
Stacked denoising auto encoders (DAEs) are well known to learn useful deep representations, which can be used to improve supervised training by initializing a deep network. We investigate a training scheme of a deep DAE, where DAE layers are gradually added and keep adapting as additional layers are added. We show that in the regime of mid-sized datasets, this gradual training provides a small ...
متن کاملGradual Training Method for Denoising Auto Encoders
Stacked denoising auto encoders (DAEs) are well known to learn useful deep representations, which can be used to improve supervised training by initializing a deep network. We investigate a training scheme of a deep DAE, where DAE layers are gradually added and keep adapting as additional layers are added. We show that in the regime of mid-sized datasets, this gradual training provides a small ...
متن کاملEffective Multi-Modal Retrieval based on Stacked Auto-Encoders
Multi-modal retrieval is emerging as a new search paradigm that enables seamless information retrieval from various types of media. For example, users can simply snap a movie poster to search relevant reviews and trailers. To solve the problem, a set of mapping functions are learned to project high-dimensional features extracted from data of different media types into a common lowdimensional sp...
متن کاملTraining Auto-encoders Effectively via Eliminating Task-irrelevant Input Variables
Auto-encoders are often used as building blocks of deep network classifier to learn feature extractors, but task-irrelevant information in the input data may lead to bad extractors and result in poor generalization performance of the network. In this paper,via dropping the task-irrelevant input variables the performance of auto-encoders can be obviously improved .Specifically, an importance-bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013